NANOINFORMATICS, COMPUTER APPLICATIONS FOR NANOMEDICINE
DOI:
https://doi.org/10.58898/sij.v2i1.27-32Keywords:
Nanoinformatics, nanomedicine, nanocarriers, nanodrug, fullerenolAbstract
Nanoinformatics emerged in the early 21st century as a response to the need for computer applications at the nano level. While nanomaterials offer the potential for developing new devices in various industrial and scientific fields, they also provide revolutionary perspectives in disease prevention, diagnosis, and treatment in humans. This review paper analyzes different aspects of nanoinformatics with a special focus on nanomedicine. Another important aspect is the use of informatics in further advancing the biological and clinical applications of basic research in nanoscience and nanotechnology. Nanoinformatics can accelerate the development of the emerging field of nanomedicine, similar to what happened with the Human Genome and other -omics projects, through the exchange of modeling and simulation methods and tools, linking toxicity information with clinical and personal databases, or developing new approaches for scientific studies.
Downloads
References
Baker, N. A., Fritts, M., Guccione, S., Paik, D. S., Pappu, R. V., Patri, A., ... & Thomas, D. G. (2009). Nanotechnology informatics white paper. US National Cancer Institute, Bethesda.
Bogdanović, G., Kojić, V., Đorđević, A., Čanadanović-Brunet, J., Vojinović-Miloradov, M., & Baltić, V. V. (2004). Modulating activity of fullerol C60 (OH) 22 on doxorubicin-induced cytotoxicity. Toxicology in Vitro, 18(5), 629-637. https://doi.org/10.1016/j.tiv.2004.02.010
Bogdanović, V., Stankov, K., Ičević, I., Žikič, D., Nikolić, A., Šolajić, S., ... & Bogdanović, G. (2008). Fullerenol C 60 (OH) 24 effects on antioxidative enzymes activity in irradiated human erythroleukemia cell line. Journal of radiation research, 49(3), 321-327. https://doi.org/10.1269/jrr.07092
Borišev, I., Mrđanovic, J., Petrovic, D., Seke, M., Jović, D., Srđenović, B., ... & Djordjevic, A. (2018). Nanoformulations of doxorubicin: how far have we come and where do we go from here?. Nanotechnology, 29(33), 332002. https://doi.org/10.1088/1361-6528/aac7dd
Borišev, M., Borišev, I., Župunski, M., Arsenov, D., Pajević, S., Ćurčić, Ž., ... & Djordjevic, A. (2016). Drought impact is alleviated in sugar beets (Beta vulgaris L.) by foliar application of fullerenol nanoparticles. PLoS One, 11(11), e0166248. https://doi.org/10.1371/journal.pone.0166248
Borović, M. L., Ičević, I., Kanački, Z., Žikić, D., Seke, M., Injac, R., & Djordjević, A. (2014). Effects of fullerenol C60 (OH) 24 nanoparticles on a single-dose doxorubicin-induced cardiotoxicity in pigs: an ultrastructural study. Ultrastructural pathology, 38(2), 150-163. https://doi.org/10.3109/01913123.2013.822045
CaNanoLab. National Cancer Institute. National Institutes of Health. https://cananolab.nci.nih.gov/caNanoLab/. Accessed Mar 2011
Collaboratory for Structural Nanobiology (CSN). http://csn.ncifcrf.gov/. Accessed June 2011
de la Iglesia, D., Maojo, V., Chiesa, S., Martin-Sanchez, F., Kern, J., Potamias, G., ... & Mitchell, J. A. (2011). International efforts in nanoinformatics research applied to nanomedicine. Methods of information in medicine, 50(01), 84-95. https://doi.org/10.3414/me10-02-0012
Djordjevic, A., Canadanovic-Brunet, J. M., Vojinovic-Miloradov, M., & Bogdanovic, G. (2004). Antioxidant properties and hypothetic radical mechanism of fullerenol C60 (OH) 24. Oxidation Communications, 27(4), 806-812.
Djordjevic, A., Srdjenovic, B., Seke, M., Petrovic, D., Injac, R., & Mrdjanovic, J. (2015). Review of synthesis and antioxidant potential of fullerenol nanoparticles. Journal of Nanomaterials, 16(1), 280-280. https://doi.org/10.1155/2015/567073
Đorđević, A. N., Ičević, I. Đ., & Bogdanović, V. V. (2009). Complex with fullerenol and copper (II). Hemijska industrija, 63(3), 171-175. https://doi.org/10.2298/HEMIND0903171D
Dragojevic-Simic, V., Jacevic, V., Dobric, S., Djordjevic, A., Bokonjic, D., Bajcetic, M., & Injac, R. (2011). Digest Journal of Nanomaterials and Biostructures, 6, pp. 819-827
Gerstein, M., Seringhaus, M., & Fields, S. (2007). Structured digital abstract makes text mining easy. Nature, 447(7141), 142-142. https://doi.org/10.1038/447142a
Gordon, N., Sagman, U., & Alliance, C. N. (2003). Nanomedicine taxonomy. Canada: Canadian Institutes of Health Research.
Injac, R., Boskovic, M., Perse, M., Koprivec-Furlan, E., Cerar, A., Djordjevic, A., & Strukelj, B. (2008a). Acute doxorubicin nephrotoxicity in rats with malignant neoplasm can be successfully treated with fullerenol C60 (OH) 24 via suppression of oxidative stress. Pharmacological Reports, 60(5), 742-749. https://doi.org/10.1016/s1734-1140(09)70041-6
Injac, R., Perse, M., Boskovic, M., Djordjevic-Milic, V., Djordjevic, A., Hvala, A., ... & Strukelj, B. (2008c). Cardioprotective effects of fullerenol C60 (OH) 24 on a single dose doxorubicin-induced cardiotoxicity in rats with malignant neoplasm. Technology in cancer research & treatment, 7(1), 15-25. https://doi.org/10.1177/153303460800700102
Injac, R., Perse, M., Cerne, M., Potocnik, N., Radic, N., Govedarica, B., ... & Strukelj, B. (2009a). Protective effects of fullerenol C60 (OH) 24 against doxorubicin-induced cardiotoxicity and hepatotoxicity in rats with colorectal cancer. Biomaterials, 30(6), 1184-1196. https://doi.org/10.1016/j.biomaterials.2008.10.060
Injac, R., Perse, M., Obermajer, N., Djordjevic-Milic, V., Prijatelj, M., Djordjevic, A., ... & Strukelj, B. (2008b). Potential hepatoprotective effects of fullerenol C60 (OH) 24 in doxorubicin-induced hepatotoxicity in rats with mammary carcinomas. Biomaterials, 29(24-25), 3451-3460. https://doi.org/10.1016/j.biomaterials.2008.04.048
Injac, R., Radic, N., Govedarica, B., Perse, M., Cerar, A., Djordjevic, A., & Strukelj, B. (2009b). Acute doxorubicin pulmotoxicity in rats with malignant neoplasm is effectively treated with fullerenol C60 (OH) 24 through inhibition of oxidative stress. Pharmacological Reports, 61(2), 335-342. https://doi.org/10.1016/s1734-1140(09)70041-6
Jacevic, V., Djordjevic, A., Srdjenovic, B., Milic-Tores, V., Segrt, Z., Dragojevic-Simic, V., & Kuca, K. (2017). Fullerenol nanoparticles prevents doxorubicin-induced acute hepatotoxicity in rats. Experimental and Molecular Pathology, 102(2), 360-369. https://doi.org/10.1016/j.yexmp.2017.03.005
Johannsen, M., Gneveckow, U., Thiesen, B., Taymoorian, K., Cho, C. H., Waldöfner, N., ... & Wust, P. (2007). Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. European urology, 52(6), 1653-1662. https://doi.org/10.1016/j.eururo.2006.11.023
Jović, D. S., Seke, M. N., Djordjevic, A. N., Mrđanović, J. Ž., Aleksić, L. D., Bogdanović, G. M., ... & Plavec, J. (2016). Fullerenol nanoparticles as a new delivery system for doxorubicin. RSC advances, 6(45), 38563-38578. https://doi.org/10.1039/c6ra03879d
Jović, D., Jaćević, V., Kuča, K., Borišev, I., Mrdjanovic, J., Petrovic, D., ... & Djordjevic, A. (2020). The puzzling potential of carbon nanomaterials: general properties, application, and toxicity. Nanomaterials, 10(8), 1508. https://doi.org/10.3390/nano10081508
Kim, B. Y., Rutka, J. T., & Chan, W. C. (2010). Nanomedicine. New England Journal of Medicine, 363(25), 2434-2443. https://doi.org/10.1056/nejmra0912273
Knežević, N. Ž., Milenković, S., Jović, D., Lazarevic, S., Mrdjanović, J., & Djordjevic, A. (2015). Fullerenol-capped porous silica nanoparticles for pH-responsive drug delivery. Advances in Materials Science and Engineering, 2015. https://doi.org/10.1155/2015/567350
Kojić, D., Purać, J., Čelić, T. V., Jović, D., Vukašinović, E. L., Pihler, I., ... & Djordjevic, A. (2020). Effect of fullerenol nanoparticles on oxidative stress induced by paraquat in honey bees. Environmental Science and Pollution Research, 27, 6603-6612. https://doi.org/10.1007/s11356-019-07385-z
Kulikowski, C. A. (2002). The micro-macro spectrum of medical informatics challenges: from molecular medicine to transforming health care in a globalizing society. Methods of information in medicine, 41(01), 20-24. https://doi.org/10.1055/s-0038-1634308
Lukyanov, A. N., & Torchilin, V. P. (2004). Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Advanced drug delivery reviews, 56(9), 1273-1289. https://doi.org/10.1016/j.addr.2003.12.004
Maojo V, Garcia-Remesal M, de la Iglesia D, Crespo J, Perez-Rey D, Chiesa S, Fritts M, Kulikow-ski CA (2011). Nanoinformatics: developing advanced informatics applications for nanomedicine. In: Prokov A (ed) Intracellular delivery: fundamentals and applications (Fundamental Biomedical Tech-nologies). Springer, NY
Maojo, V., & Kulikowski, C. A. (2003). Bioinformatics and medical informatics: collaborations on the road to genomic medicine?. Journal of the American Medical Informatics Association, 10(6), 515-522. https://doi.org/10.1197/jamia.m1305
Maojo, V., Martin-Sanchez, F., Kulikowski, C., Rodriguez-Paton, A., & Fritts, M. (2010). Nanoinformatics and DNA-based computing: catalyzing nanomedicine. Pediatric Research, 67(5), 481-489. https://doi.org/10.1203/pdr.0b013e3181d6245e
Milic Djordjevic V., Djordejvić A., Dobric S., Injac R., Vuckovic D., Stankov K., & Dragojevic-Simić V. (2006). Materials Science Forum 518, pp. 525-529
Milic, V. D., Stankov, K., Injac, R., Djordjevic, A., Srdjenovic, B., Govedarica, B., ... & Strukelj, B. (2009). Activity of antioxidative enzymes in erythrocytes after a single dose administration of doxorubicin in rats pretreated with fullerenol C60 (OH) 24. Toxicology Mechanisms and Methods, 19(1), 24-28. https://doi.org/10.1080/01612840802203098
Mirkov, S. M., Djordjevic, A. N., Andric, N. L., Andric, S. A., Kostic, T. S., Bogdanovic, G. M., ... & Kovacevic, R. Z. (2004). Nitric oxide-scavenging activity of polyhydroxylated fullerenol, C60 (OH) 24. Nitric oxide, 11(2), 201-207. https://doi.org/10.1016/j.niox.2004.08.003
National Science Foundation (2010). Nanoinformatics 2010: a Collaborative Roadmaping Workshop.November 3–5, 2010. Arlington, Virginia (USA). http://nanotechinformatics.org/ . Accessed Feb 2011
Network for Computational Nanotechnology, National Science Foundation (2009). NanoHub. http://nanohub.org/. Accessed June 2011
O’donoghue, S. I., Goodsell, D. S., Frangakis, A. S., Jossinet, F., Laskowski, R. A., Nilges, M., ... & Olson, A. J. (2010). Visualization of macromolecular structures. Nature methods, 7(Suppl 3), S42-S55. https://doi.org/10.1038/nmeth.1427
Pandey, S., Thakur, M., Mewada, A., Anjarlekar, D., Mishra, N., & Sharon, M. (2013). Carbon dots functionalized gold nanorod mediated delivery of doxorubicin: tri-functional nano-worms for drug delivery, photothermal therapy and bioimaging. Journal of Materials Chemistry B, 1(38), 4972-4982. https://doi.org/10.1039/c3tb20761g
Petrovic, D., Seke, M., Borovic, M. L., Jovic, D., Borisev, I., Srdjenovic, B., ... & Djordjevic, A. (2018). Hepatoprotective effect of fullerenol/doxorubicin nanocomposite in acute treatment of healthy rats. Experimental and molecular pathology, 104(3), 199-211. https://doi.org/10.1016/j.yexmp.2018.04.005
PubMed. U.S. National Library of Medicine. National Institutes of Health. http://www.ncbi.nlm.nih.gov/sites/entrez. Accessed Nov 2011
Munteanu, R. C. (2011). Editorial [Hot Topic: Convergence of Bioinformatics with Nanotechnology and Artificial Intelligence Technologies (Guest Editor: Cristian Robert Munteanu)]. Current Bioinformatics, 6(2), 144-144. https://doi.org/10.2174/1574893611106020144
Seke, M., Petrovic, D., Djordjevic, A., Jovic, D., Borovic, M. L., Kanacki, Z., & Jankovic, M. (2016). Fullerenol/doxorubicin nanocomposite mitigates acute oxidative stress and modulates apoptosis in myocardial tissue. Nanotechnology, 27(48), 485101. https://doi.org/10.1088/0957-4484/27/48/485101
Srdjenovic, B., Milic-Torres, V., Grujic, N., Stankov, K., Djordjevic, A., & Vasovic, V. (2010). Antioxidant properties of fullerenol C60 (OH) 24 in rat kidneys, testes, and lungs treated with doxorubicin. Toxicology Mechanisms and Methods, 20(6), 298-305. https://doi.org/10.3109/15376516.2010.485622
Stankov, K., Borisev, I., Kojic, V., Rutonjski, L., Bogdanovic, G., & Djordjevic, A. (2013). Modification of antioxidative and antiapoptotic genes expression in irradiated K562 cells upon fullerenol C60 (OH) 24 nanoparticle treatment. Journal of Nanoscience and Nanotechnology, 13(1), 105-113. https://doi.org/10.1166/jnn.2013.6847
Thakur, N., Kumari, C., & Dev, V. A. (2021). A nano-agro formulation strategy: Combatting plant stresses via linking agri sustainability and environmental safety. In Microbial Management of Plant Stresses (pp. 73-83). Woodhead Publishing. https://doi.org/10.1016/b978-0-323-85193-0.00015-2
Thapa, R. K., & Kim, J. O. (2023). Nanomedicine-based commercial formulations: Current developments and future prospects. Journal of Pharmaceutical Investigation, 53(1), 19-33. https://doi.org/10.1007/s40005-022-00607-6
Thomas, D. G., Pappu, R. V., & Baker, N. A. (2011). NanoParticle Ontology for cancer nanotechnology research. Journal of biomedical informatics, 44(1), 59-74. https://doi.org/10.1016/j.jbi.2010.03.001
Thomas, W. (2023). Nanomedicine Technologies and Applications, 2nd Edition.
Tian, L., & Bae, Y. H. (2012). Cancer nanomedicines targeting tumor extracellular pH. Colloids and Surfaces B: Biointerfaces, 99, 116-126. https://doi.org/10.1016/j.colsurfb.2011.10.039
Torres, V. M., Srdjenovic, B., Jacevic, V., Simic, V. D., Djordjevic, A., & Simplício, A. L. (2010). Fullerenol C60 (OH) 24 prevents doxorubicin-induced acute cardiotoxicity in rats. Pharmacological Reports, 62(4), 707-718. https://doi.org/10.1016/s1734-1140(10)70328-5
Trajković, S., Dobrić, S., Jaćević, V., Dragojević-Simić, V., Milovanović, Z., & Đorđević, A. (2007). Tissue-protective effects of fullerenol C60 (OH) 24 and amifostine in irradiated rats. Colloids and surfaces B: Biointerfaces, 58(1), 39-43. https://doi.org/10.1016/j.colsurfb.2007.01.005
Vapa, I., Torres, V. M., Djordjevic, A., Vasovic, V., Srdjenovic, B., Simic, V. D., & Popović, J. K. (2012). Effect of fullerenol C 60 (OH) 24 on lipid peroxidation of kidneys, testes and lungs in rats treated with doxorubicine. European journal of drug metabolism and pharmacokinetics, 37, 301-307. https://doi.org/10.1007/s13318-012-0092-y
Vesna, J., Danica, J., Kamil, K., Viktorija, D. S., Silva, D., Sanja, T., ... & Aleksandar, D. (2016). Effects of fullerenol nanoparticles and amifostine on radiation-induced tissue damages: Histopathological analysis. Journal of Applied Biomedicine, 14(4), 285-297. https://doi.org/10.1016/j.jab.2016.05.004
Viceconti, M., Clapworthy, G., & Jan, S. V. S. (2008). The virtual physiological human—a european initiative for in silico human modelling—. The journal of physiological sciences, 58(7), 441-446. https://doi.org/10.2170/physiolsci.rp009908
Vraneš, M., Borišev, I., Tot, A., Armaković, S., Armaković, S., Jović, D., ... & Djordjevic, A. (2017). Self-assembling, reactivity and molecular dynamics of fullerenol nanoparticles. Physical Chemistry Chemical Physics, 19(1), 135-144. https://doi.org/10.1039/c6cp06847b
Wong, H. L., Bendayan, R., Rauth, A. M., Li, Y., & Wu, X. Y. (2007). Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Advanced drug delivery reviews, 59(6), 491-504. https://doi.org/10.1016/j.addr.2007.04.008
Workshop on Nanoinformatics Strategies (2007). National Science Foundation. Arlington, Virginia http://128.119.56.118/~nnn01/Workshop.html . Last access June 2011.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Aleksandar Đorđević
This work is licensed under a Creative Commons Attribution 4.0 International License.